STATUTE OF THE	
	Do
* & ANGALORE *	

Table of Contents

18ECL37 : ANALOG ELECTRONICS LABORATORY	2
A. LABORATORY INFORMATION	2
1. Lab Overview	2
2. Lab Content	2
3. Lab Material	4
4. Lab Prerequisites:	4
5. General Instructions	5
6. Lab Specific Instructions	5
B. OBE PARAMETERS	6
1. Lab / Course Outcomes	6
2. Lab Applications	6
3. Articulation Matrix	7
4. Mapping Justification	7
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	9
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	.10
D. EXPERIMENTS	.10
Experiment 01 : RECTIFIER CIRCUITS	.10
Experiment 02 : Clipping & clamping	.18
Experiment 03 : Zener Diode as Voltage Regulator	19
Experiment 04 : EMITTER FOLLOWER Using Voltage Divider BIAS	21
$V_{cc} = V_{r1} + V_{r2}.$.24
Experiment 05 : COMMON EMITTER bjt Amplifier	.25
Experiment 06: Characteristics of Junction Field Effect Transistor	30
Experiment 07 : Common source JFET/MOSFET	.33
Experiment 08 : n-channel MOSFET	.38
Experiment 09 : class B push pull power amplifier	42
Experiment 10 : RC-Phase shift Oscillator using FET	.42
Experiment 11 : Hartley Oscillator & Colpitts Oscillator	46
Experiment 12 : Crystal oscillator	.50

Note : Remove "Table of Content" before including in CP Book

18ECL37 : ANALOG ELECTRONICS LABORATORY

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	BE	Program:	EC
Year / Semester :	2 / 3	Academic Year:	2019-20
Course Title:	ANALOG ELECTRONICS LAB	Course Code:	18ECL37
Credit / L-T-P:	3/ 3-0-0	SEE Duration:	
Total Contact Hours:	Hrs	SEE Marks:	
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Mrs. Amaresh C	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab	Concep	Blooms
		Hours	t	Level
1	Design and set up the following rectifiers with and without	3	Rectifier	L4
	filters and to determine ripple factor and rectifier efficiency:		Charact	Analyze
	(a) Full Wave Rectifier		eristics	
	(b) Bridge Rectifier			
2	Conduct experiment to test diode clipping (single/double	3	Diode	L4
	ended) and clamping circuits (positive/negative).		Clipping	
			&	
			Clampin	
			g	
3	Conduct an experiment on Series Voltage Regulator using	3	Regulato	L4
	Zener diode and power transistor to determine line and load		r	
	regulation characteristics.		Charact	
			eristics	
4	Realize BJT Darlington Emitter follower with and without	3	BJT	L4
	bootstrapping and determine the gain, input and output		Emitter	
	impedances.		follower	
			gain&	
			impedan	
			ces	
5	Design and set up the BJT common emitter amplifier using	3	BJT	L4
	voltage divider bias with and without feedback and determine		common	
	the gain-bandwidth product from its frequency response.		emitter	
			gain &	
			frequen	

PINSTITUTE OF
84NGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
Title:	Course Lab Manual	Page: 3 / 53

			су	
6	Plot the transfer and drain characteristics of a JFET and	3	transfer	L4
	calculate its drain resistance, mutual conductance and		and	
	amplification factor.		drain	
			characte	
			ristics of	
			JFET	
7	Design, setup and plot the frequency response of Common	3	Frequen	L4
	Source JFET/MOSFET amplifier and obtain the bandwidth.		су	
			respons	
			e of	
			JFET/MO	
			SFET	
8	Plot the transfer and drain characteristics of n-channel	3	characte	L3
	MOSFET and calculate its parameters, namely; drain		ristics of	
	resistance, mutual conductance and amplification factor.		n–	
			channel	
			MOSFET	
9	Set-up and study the working of complementary symmetry	3	push	L4
	class B push pull power amplifier and calculate the efficiency.		pull	
			power	
			amplifie	
			r	
			efficienc	
			У	
10	Design and set-up the RC-Phase shift Oscillator using FET,	3	Study of	L4
	and calculate the frequency of output waveform.		RC	
			phase	
			shift	
			oscillato	
			r	
			wavefor	
			ms –	
	Design and set-up the following tuned oscillator circuits using	3	Frequen	L4
	BJI, and determine the frequency of oscillation.		cy of	
	(a) Hartley Oscillator (b) Colpitts Oscillator		oscillati	
			on of	
			hartley&	
			colpitts	
			Oscillato	
			r	
12	Design and set-up the crystal oscillator and determine the	3	Frequen	L4

Sta Institut	E OF JEC	SKIT	Teaching Process	Rev No.:	1.0
65		Doc Code:	SKIT.Ph5b1.F03	Date: 11	-07-2019
* BANGAL	ORE	Title:	Course Lab Manual	Page: 4 /	53
Copyright	©2017.	cAAS. All rights reserv	ved.		
f	frequ	ency of oscill	ation.	cy of	
				oscillati	
				on of	
				crystal	
				oscillato	
				r	

3. Lab Material

Unit	Details	Available
1	Text books	
	1. Robert L. Boylestad and Louis Nashelsky, "Electronics devices and	In Lib
	Circuit theory",Pearson, 10th Edition, 2012, ISBN: 978-81-317-6459-6.	
2	Reference books	
	1. Adel S. Sedra and Kenneth C. Smith, "Micro Electronic Circuits Theory	In dept
	And Applicatication," 5th Edition ISBN:0198062257	
	2. Fundamentals of Microelectronics, Behzad Razavi, John Weily ISBN	
	2013 978-81-	
	265-2307-8	
	3. J.Millman & C.C.Halkias—Integrated Electronics, 2 nd edition, 2010,	
	TMH. ISBN 0-	
	07-462245-5	
	4. K. A. Navas, "Electronics Lab Manual", Volume I, PHI, 5th Edition, 2015,	
	ISBN:9788120351424.	
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Lab Prerequisites:

-	-	Base Course:		_	_
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	18ELN14	Basic Electronics	Knowledge on basic componentslike	1	
			diode, rectifiers, transistors etc		
				-	

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Dept Prepared by Approved

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the Experiment, certification/Sign of the concerned	
	staff in-charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the	
	readings/observations into the notebook while performing the	
	experiment.	
5	The record of observations along with the detailed experimental	
	procedure of the experiment in the Immediate last session should be	
	submitted and certified/Signed by staff member in-charge.	
6	Should attempt all Experiments / assignments given in the list of	
	contents in Lab manual,session wise.	
7	When the experiment is completed, should disconnect the setup made	
	by them, and should return all the components/instruments taken for	
	the purpose of experiment conduction.	
8	Any damage of the equipment or burn-out components will be viewed	
	seriously either by putting penalty or by dismissing the total group of	
	students from the lab for the semester/year	
9	Completed lab assignments should be submitted in the form of a Lab	
	Record in which you have to write the Circuit diagram, do the necessary	
	calculations with the values given for the circuit components and	
	output for various inputs given	

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Start writing the circuit diagram	
2	Do the required calculations and find the values of components	
3	Replace the components with the calculated values in the circuit	
	diagram	
4	Make the connections as per circuit diagram	
5	Turn on the power supply and CRO	
6	Check for the output as per the calculations	
7	Check for the Errors in connection and correct it	
8	Write down the reading and output value and compare	
9	Perform the Experiment	

CONTRACTOR OF

Copyright ©2017. cAAS. All rights reserved.

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach.	Concept	Instr	Assessment	Blooms'
		Hours		Method	Method	Level
1	Understand and design wave shaping	03	Clipping and	Demons	Test	L4
	circuits		clamping	trate		
2	Apply mathematics and concepts of	03	Amplifiers	Demons	Test	L4
	fundamentals to design electronics circuits			trate		
3	Conduct an experiment to verify the	03	Rectification	Demons	Test	L4
	device characteristics		Regulation	trate		
4	Design a simple electronic circuit for a	03	Oscillators	Simulati	Test	L4
	given specifications			on		
5	To estimate the parameters through	03		Demons	Test	L4
	experiments and analyse the			trate		
	performance of the given circuits					
-	Total	15	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level		
1	To determine the amplitude of the modulating signals & used to supply	CO1	L4		
	steady and polarized Dc voltage in the electric welding.				
2	Used in speech processing for communications (radio) applications & audio	CO2	L4		
	compression.				
3	Used in RF,radio, small power supply units, medical field etc	CO3	L3		
4	In some Capacitor to power the high-side NMOS driver.	CO4	L3		
5	Apply voltage divider bias to find gain bandwidth & frequency response				
6	Used in buffer amplifier, electronic switch, phase shift oscillator etc	CO6	L3		
7	widely used for switching and amplifying electronic signals in the electronic	C07	L3		
	devices.				
8	Switching circuits	CO8	L3		
9	used in low-cost design devices and mobile devices	CO9	L4		
10	musical instruments, voice synthesis and in GPS units since they work at all	CO10	L4		
	audio frequencies.				
11	Used in radio receivers, oscillations in RF, sensors, mobile and radio	CO11	L4		
	communications.				

States The States	E OF TRO	SKIT	Teaching Process	Rev No	0.: 1.0		
65		Doc Code:	SKIT.Ph5b1.F03	Date: 1	1-07-2	2019	
* BANGALORE *		Title:	Course Lab Manual	Page: 7	ge: 7 / 53		
Copyright	©2017.	cAAS. All rights reserv	ved.				
12 frequency-determining component, a wafer of quartz crystal or ceramic with					CO12	L4	
electrodes connected to it.							

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Level
		1	2	3	4	5	6	7	8	9	10	11	12	
1	Understand and design wave shaping circuits	3	3	1	2	2	_	-	-		-	_	-	L4
2	Apply mathematics and concepts of fundamentals to design electronics circuits	3	3	1	2	2	-	-	-	-	-	-	-	L4
3	Conduct an experiment to verify the device characteristics	3	3	1	2	2	-	-	-	-	-	-	-	L4
4	Design a simple electronic circuit for a given specifications	3	3	1	2	2	-	-	-	-	-	-	-	L4
5	To estimate the parameters through experiments and analyse the performance of the given circuits	3	3	1	2	2	_	_	_	_	_	_	_	L4

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mapping		Mapping	Justification
		Level	
CO	PO	-	-
CO1	PO1	L4	Wave shaping circuits require the basic knowledge of components ,
			value calculation and designing of circuits using them.
CO1	PO2	L4	Analysis of different voltage clipping levels as problem analysis is
			done
CO1	PO3	L4	Different levels and patterns of clipping is done which gives us
			various design solutions
C01	PO4	L4	Basic knowledge of designing is required to help circuits to be used in
			different higher end circuits.
C01	PO5	L4	Modern tools can be used to realize the circuits in software and vary
			to get different levels of voltage.

A SANGALORE +

State of the	SKIT			Teaching Process	Rev No.: 1.0					
	Doc Co	de: S	GKIT.Ph5b1.F03 Date: 11-02							
* BANGALORE *	Title	: 0	Coui	rse Lab Manual	Page: 8 / 53					
Copyright ©2017. cAAS. All rights reserved.			d.							
CO2	PO1	L4	•	Knowledge of engineering fundamentals is required to de						
				amplifier circuits with specific	gain.					
CO2	PO2	L4	·	Analyze the gain needed and design accordingly	the parameters in the					
				circuit						
CO2	PO3	L4		Basic level of solution development is done usi	ng amplifier circuits.					
CO2	PO4	L4	.	Investigations regarding gains is done by p	lotting graph and					
				calculating bandwidth for the am	ıplifier					
CO2	PO5	L4		Modern tools can be used to realize the circuits	in software and also					
				cascading of circuits can be done to incr	ease the gain.					
CO3	PO1			Knowledge of engineering fundamentals is r	equired to design					
				Rectification circuits with different regulation levels						
CO3	PO2	L4		Regulation of different voltage levels can be do	ne and ripple factor ,					
				deficiency calculations is done to analyz	e the circuits.					
CO3	PO3	L4		Basic level of solution development is done	using Rectification					
				circuits.						
CO3	PO4	L4		Investigations regarding efficiency is done for a	different rectification					
				circuits.						
CO3	PO5	L4		Modern tools can be used to realize the circuits	s in software making					
				analysis easier.						
CO4	PO1	L4		Knowledge of engineering fundamentals is r	equired to design					
				oscillator circuits with specific	gain.					
CO4	PO2	L4		Analyze the circuits design accordingly the par	ameters in the circuit					
				for given frequency.						
CO4	PO3	L4		Basic level of solution development is done usi	ng oscillator circuits.					
CO4	PO4	L4		Investigations regarding tank circuit is done for	generating sustained					
				oscillations						
CO4	PO5	L4		Modern tools can be used to realize t	he circuits					

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

STATUTE OF	SKIT	Teaching Process	Rev No.: 1.0				
STANGALORE #	Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019				
	Title:	Course Lab Manual	Page: 9 / 53				
Copyright ©2017. cAAS. All rights reserved.							

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi		No. of question in Exam						CO	Levels
		ng	CIA-	CIA-	CIA-	Asg-	Asg-	Asg-	SEE		
		Hours	1	2	3	1	2	3			
1		03									
2		03									
3		03									
4		03									
5		03									
6		03									
7		03									
8		03									
9		03									
10		03									
11		03									
12		03									
-	Total	36	12						12	-	-

Note: Write CO based on the theory course.

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
A SANGALORE *	Title:	Course Lab Manual	Page: 10 / 53
c · · · @2017	AAC AU 1 1 .		

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam - 1			
CIA Exam - 2			
CIA Exam - 3			
Assignment – 1			
Assignment – 2			
Assignment – 3			
Seminar – 1			
Seminar – 2			
Seminar – 3			
Other Activities - define		CO1 to Co9	L2, L3, L4
– Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks			
1	Observation and Weekly Laboratory Activities	05 Marks			
2	Record Writing	10 Marks for each Expt			
3	Internal Exam Assessment	25 Marks			
4	Internal Assessment	40 Marks			
5	SEE	60 Marks			
-	Total	100 Marks			

D. EXPERIMENTS

_

Experiment 01 : RECTIFIER CIRCUITS

-	Experiment No.:	1	Marks		Date Planned		Date Conducte	•		
							d			
1	Title	De	sign and set	up the follo	wing rectifie	rs with and	without filt	ers		
		and	d to determi	ne ripple fac	tor and rect	ifier efficier	icy:			
		(a)	(a) Full Wave Rectifier							
		(b)	(b) Bridge Rectifier							
2	Course Outcomes	De	sign Full w	vave & Brid	lge rectifier	and dete	rmine ripp	le facto	or &	
		effi	ciency.							
3	Aim	Tes	sting of Hal	f wave , Fu	ll wave and	Bridge Re	ctifier circu	its with	and	
		wit	hout capaci	tor filter. I	Determination	n of ripple	factor, re	gulation	and	

HISTITUTE OF
BANGALORE

		efficiency.							
4	Material/	Lab Manual							
	Equipment Required	Switching diode – Step-down transformer with center tap secondary (230/12V-0-12V), diode 1N4007, Resistor 1000hm, Capacitor 470uf Resistors 50 ohm and DRB, bread board, Wires CRO & multimeter for testing							
5	Theory, Formula,								
	Principle, Concept	Theory: – A rectifier converts ac to dc. Rectifiers are used in the design of dc power supplies required for all electrical circuits to work. A semiconductor diode conducts only in one direction. This property is used in the design of rectifier circuit. Based on the output there are mainly two types of rectifiers namely half wave and full wave rectifiers. As the Dc output voltage is in pulsed form, capacitor is used to filter it. The main purpose of conducting this test is to understand the application of diode in half wave and full wave rectifier circuits and to understand how to get ripple free output using capacitor filter.							
		If wave single phase rectifiers: - The Half wave rectifier is a circuit, ich converts an ac voltage to dc voltage. In the Half wave rectifier cuit shown, the transformer serves two purposes. t can be used to obtain the desired level of dc voltage (using step up or p down transformers). t provides isolation from the power line.							
		II wave single phase rectifier:-Both cycles are rectified and ripple factor II be less and efficiency increases Based on the construction, there are ainly two types of full wave rectifiers							
		 a) Center tap full wave rectifier:- In this configuration, only 2 diodes are sufficient, but transformer with center tap secondary is must. Peak inverse voltage of the diode is twice the input voltage. b) Full wave bridge rectifier:- 4 diodes are required and can be applied without transformer also. As two diodes are in series with each cycle, the voltage drop across the diode is twice that of in the center tap transformer. So at very low voltage this is not suitable. 							
6	Procedure	 Draw the circuit, expected waveform, design the transformer ratio in the circuit Place the components on bread board and connect them as per fig 1. Use the wires for connection as required. Set the DRB to maximum and note down value of currents I_{dc} and I_{ac} with the same multimeter. Also note down readings of V_{ac}, V_{dc} with the same multimeter. Value of V_{dc} for DRB set to maximum is designated as no-load voltage V_{dc(NL)}. Tabulate the readings and find out ripple factor, load regulation, and efficiency. 							

and the second	STITUTE OF THE	SKIT		Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Pł	15b1.F03	Date: 11-07-2019
*0.	WGALORE	Title:	Course	Lab Manual	Page: 12 / 53
Copyri	ight ©2017.	cAAS. All rights reserv	ved.	Using CRO measure the out put wave f matches with required wave form. Note dow form and draw it on graph. Repeat this experiment for half wave rectin suitable capacitor across the load to reduce 8% Repeat this experiment for both type full w and with capacitorfficiency step 7:Disconnect the circuit	orm and sees that it n input & output wave fier by connecting the the ripple to less than vave rectifiers without
7	Block, Model Reactio Expecto	Circuit, Diagram, n Equation, ed Graph	, •	A) Half Wave Rectifier without & with f Circuit Diagram:	ilter
			B) Ful Circui Full wa	IN4007 0-100mA A A C C C C C C C C C C C C C	ctifier without filter)
			230v, 1j 50Hz su Full wa filter)	phase, pply ave bridge rectifier with C filter (Remove C	A FTOUF R 100 DRB DRB C for rectifier without

A STATE	TITUTE OF THE	SKIT				Teach	ning Process			Rev No.: 1.0	
Doc Code:			SKIT.Ph5b1.F03						Date: 11-07-2019		
* 84	NGALORE *	Title:	Co	ourse	Lab Ma	inual				Page: 14	l / 53
Copyri	ght ©2017.	cAAS. All rights reserv	/ed.								
			Ţ	ţc	Vm	<u>Vr_(p-p)</u>	Vdc=Vm - (<u>Vr_</u> p-p/2)	<u>Vr_rms</u> = <u>Vr</u> (p-p))⁄(2√3)	$\gamma = Vr_rms/Vdc$
				•					1		·
			R) Ful	l wave	Rectifier	•6				
			R	eadin	gs	Recuire					
			Vi	n (ac)=	agistanaa	$\sim V_{\rm NL}$		(V	Vith load	removed or
			ке	eping	, 10au 10	esistance	~100 K				
				RL	lac(mA) Idc(mA)	Vo(dc)	Vo(ac)	Ripple = Vo(ac)/Vo(dc)	Efficiency	Regulation
			wi	th C f	filter				_		
			J	ldc	Vm	<u>Vr_(</u> p-p)	$\underline{Vdc}=\underline{Vm}-($	<u>Vr_</u> p-p/2)	$Vr_rms = Vr(p-p)$)⁄(2√3)	$\gamma = Vr_rms/Vdc$
					ł	1			-	ŀ	
9	Sample	Calculations									
	•				A) Ha	If Wave]	Rectifier	without	& with filte	er	
			De	esign	: With	out Filte	er				
			Vi	n(ac)	= rms y	value of i	nput(sec	ondary o	f the transfo	rmer),	
			Vc	(dc) =	= Avera	age value	of dc ou	utput			

A INSTITUTE OF IS
84NON ORE

00,11		
	Vo(ac) = rms	value of ac component of the output voltage
	Let Vo(dc) = 5	5V , Idc =100mA $$ for HWR output wave, Vdc= Vm/ π
	Vm = Vo(dc) :	$\mathbf{x} \mathbf{\pi} = 15.7 $ for Sinusoidal input wave, Vrms= Vm/ $\sqrt{2}$
	Vin(ac rms) = transformer s	\cdot Vm/ $\sqrt{2} = 11.13$ V \rightarrow 12V (Connect two end terminals of econdary)
	So Rload =5V	/100mA =50 ohm
	With Filter	
	Vdc=Vm-Vr(p	p-p)/2
	Let Ripple fac	tor, $r < 0.08$ or 8%, Vo(dc) = 10V ,
	I _{dc} =100mA	
	$r = 1 / (2 x \sqrt{3})$	3 fCR _L)
	f=50Hz, r=0.	08 $R_{L=} 100\Omega$., substitute and calculate C value.
	C= 470uF	
	Wkt	$Vrms = Vm/2$ $Vdc = Vm/\Pi$
	Calculations	:
	Ripple factor, r Vo(ac)/Vo(dc)	= rms value of ac component / Value of dc component = or lac/ldc
	% Efficiency η =	= output power /Input power =Idc ² * 100 /(Iac ²⁺ Idc ²))
	% Regulation =	[(V _{NL} -V _{FL})/V _{FL}]*100
	B) Full wave	Rectifiers

		Design: Without Filter
		Let Vo(dc) = 10V, Idc =100mA. for FWR output wave, Vdc= 2Vm/ π
		$Vm = Vo(dc) \times \pi/2 = 15.7V$
		Vin(rms) = Vm/ $\sqrt{2}$ = 11.1V (Use 12V transformer)
		$Vdc=Idc \times R_L$
		So $R_L = Vdc/Idc = 10V/100mA = 100$ ohm
		With Filter
		Vdc=Vm-Vr(p-p)/2
		Let Ripple factor, $r=0.04$ or 4%, Vo(dc) = 15V , Idc =100mA
		$r = 1 / (4 x \sqrt{3} fCR_L)$
		Take C= 470uF
		Wkt $Vrms = Vm / \sqrt{2}$ $Vdc = 2Vm / \Pi$
		Calculations:
		Ripple factor, $r = rms$ value of ac component / Value of dc component
		= Vo(ac)/Vo(dc) or lac/ldc
		% Efficiency η = output power /Input power =Idc ² * 100 /(Iac ²⁺ Idc ²))
		% Regulation = $[(V_{FL} - V_{FL})/V_{FL}]*100$
10	Graphs, Outputs	
		A) Half Wave Rectifier without & with filter

Dept Prepared by Approved

SKIT			Teaching	F	Rev No.: 1.0		
New Contraction		Doc Code:	SKIT.Ph5b1.F03	Γ	Date: 11–07–2019		
Title:			Course Lab Manual		F	Page: 18 / 53	
Copyri	ght ©2017.	cAAS. All rights reserv	ved.				
11	1 Results & Analysis		Result :- The performance	e of all the thr	ee rectifiers ar	e checked	
			Circuit	Ripple factor y	Efficiency η	Regulation	
			HWR without filter				
			HWR with C filter				
			FWR -center tap without filter				
			FWR -center tap with C filter				
			FWR -Bridge without filter				
			FWR -Bridge with C filter				
						· · ·	
12	Applica	tion Areas	• To determine the a	amplitude of	the modulatin	g signals & used to	
			supply steady and I	polarized Dc v	oltage in the	electric welding.	
13	Remark	S					
14	Faculty	Signature	8				
	with Da	te					

Experiment 02 : Clipping & clamping

_	Experiment No.:	2	Marks		Date Planned		Date Conducte				
1	Title	Conc clam	onduct experiment to test diode clipping (single/double ended) and amping circuits (positive/negative).								
2	Course Outcomes	omes Understanding Clipping and Clamping									
3	Aim										
4	Material / Equipment Required	Lab N	Manual								
5	Theory, Formula, Principle, Concept	To id To d	lentify the cl o the calcula	ipping & cla itions	mping wave	eforms in the	CRO				
6	Procedure, Program, Activity, Algorithm, Pseudo	Step Step Step	1: start by D 2: See the w 3: Write the	Designing the vave forms fo same in obs	e circuit usi or clipping ک ervation	ng bread boa & clamping (j	ard positive & n	egative)			

Ser 19	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code	SKIT.Ph5b1.F03	Date: 11-07-2019
1	Title:	Course Lab Manual	Page: 19 / 53
Copyri	ight ©2017. cAAS. All rights r	served.	
	Code	Step 4: do the calculations	
		Step 5: Disconnect the circuit	
7	Block, Circui	,	
	Model Diagram	,	
	Reaction Equatior	,	
	Expected Graph		
8	Observation	Write down the wave forms of clipping & clamping for	r different values
	Table, Look-u		
	Table, Output		
9	Sample		
	Calculations		
10	Graphs, Outputs		
11	Results & Analysi		
12	Application Areas		
		Used in speech processing for communications (radio) applications & audio
		compression.	
13	Remarks		
14	Faculty Signatur	2	
	with Date		

Experiment 03 : Zener Diode as Voltage Regulator

-	Experiment No.:	3	Marks		Date Planned		Date Conducte	
							d	
1	Title	Conc	luct an expe	riment on S	Series Voltage	Regulator	using Zener	
		diod	e and power	transistor	to determine l	ine and loa	d regulation	า
		chara	haracteristics.					
2	Course Outcomes	Dete	etermine the Voltage regulator line & load characteristics.					
3	Aim	To st	To study zener diode as voltage regulator and calculate % of load regulation.					
4	Material /	Lab I	Lab Manual					
	Equipment	Zene	Zener diode(), Resistance (100Q/2W, Load Resistance), Power Suply(0-					
	Required	30V)), Multimete	r				
		Circu	uit Diagram					
5	Theory, Formula,	The	<u>ory:</u>					
	Principle, Concept	Zene	er diode is a	a P-N junct	tion diode spe	ecially dest	igned to op-	erate in the
		reven	rse biased m	ode. It is a	cting as norm	al diode w	hile forward	d biasing. It
		has a	a particular	voltage kno	own as break	down volta	age, at whic	h the diode
		breal	k downs wh	ile reverse	biased. In the	e case of n	ormal diode	es the diode
		dama	ages at the b	reak down	voltage. But Z	ener diode	is specially	designed to
		opera	ate in the rev	erse break	iown region.	7 h 1	darm Wil-	n a diada i-
		Ine	basic princip	ole of Zenei	alode is the Z	Lener break	aown. Whe	en a diode is

and the second second	TITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0
E C		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
* 84	WGALORE	Title:	Course Lab Manual	Page: 20 / 53
<u>Copyri</u>	6 Procedure, Program, Activity Algorithm, Pseudo Code		ved. ved. ved. ved. ved. ved. ved. voltage is applied across the junction, there will be very to the junction. And the electron hole pair generation ta surrent flows. This is known as Zener break down. So a Zener diode, in a forward biased condition acts everse biased mode, after the break down of junction increases sharply. But the voltage across it remains consist everse biased mode, after the break down of junction increases sharply. But the voltage across it remains consist everse biased mode, after the break down of junction increases sharply. But the voltage across it remains consist everse biased in voltage regulator using Zener diodes. The figure shows the zener voltage regulator, it consist everse is always selected in parallel with the load RL in reverse boutput voltage is always selected with a breakdown vol A) Load Regulation: 1. For finding load regulation, make connection below. 2. Keep input voltage constant say 10V value. 3. Note down no load voltage 'VNL' for maximum load resequation using, % loa VFL)/ VFL x100	When a high reverse y strong electric field kes place. Thus heavy as a normal diode. In current through diode onstant. This principle s of a current limiting Vs and zener diode is biased condition. The tage Vz of the diode. ons as shown in figure y vary load resistance sistance value. d regulation = (VNL-
7	Block, Model Reactio Expecte	Circuit, Diagram, n Equation, ed Graph	V _{AA} (0-20)V = Load Regulation: Zener Regulator	0) mA (VZ) (0 -10) V

8	Observation	Write down the characteristics graph
	Table, Look-up	
	Table, Output	
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
		Used in RF, radio, small power supply units, medical field etc
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 04 : EMITTER FOLLOWER Using Voltage Divider BIAS

-	Experiment No.:	4	Marks		Date		Date		
					Planned		Conducte		
1	Title	Reali detei	alize BJT Darlington Emitter follower with and without bootstrapping and termine the gain, input and output impedances.						
2	Course Outcomes	Reali	ze BJT darlir	igton emitte	r follower g	jain, input &	output imp	edances	
3	Aim	Designand of the second	esign of a BJT Darlington emitter follower and determine the gain, input d output impedances.						
4	Material /	Lab M	Manual						
	Equipment Required	Brea 30Vo	d board, N dc), Signal g	PN transisto enerator, CF	ors (SL100) O for testin	, Resistors, g	Capacitors	, VRPS (0-	
5	Theory, Formula, Principle, Concept	Theo may For h a Dan trans volta base one. Henc This	bry: The en be used whe higher input rlington pair sistor, the n ge is always and emitte In addition, te it is said accounts fo	nitter follow erever input impedance, When the o etwork is ro less than t r. However, the output i to follow th r the termir	er has reas impedance we may use output is tak eferred to a he input vo the voltag s having the e input volt ology 'Emit	onably high up to about 2 transistor an from the s an Emitte Itage due to e gain is u same polar age with ar ter – follow	n input imp 500 K Ohm rs to form w e Emitter ter er follower. to the drop k sually appro rity as the in n in-phase r er'. For ac a	edance and s is needed. hat is called minal of the The output between the oximated to put voltage. relationship. analysis, the	

ST. M	TITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0					
		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019					
* 0,	WGALORE *	Title:	Course Lab Manual	Page: 22 / 53					
Copyri	ght ©2017.	cAAS. All rights rese	rived.	(a common collector					
			configuration. This circuit presents high impedance	a common-conector					
			impedance at the output. It is therefore frequently	used for impedance					
			matching purposes, where a load is matched to the	source impedance for					
			maximum signal transfer through the system.						
			The Darlington connection shown is a connect	tion of two transistors					
			whose result is a current gain that is the product of th	e current gains of the					
			individual transistors. Hence the Darlington pair operat	tes as one 'Super beta'					
			transistor offering a very high current gain. Thus the	e Darlington Emitter					
			follower is a CC configuration that has the following cl	haracteristics:					
			Voltage gain \rightarrow almost unity						
			Current gain \rightarrow very high, a few thousands						
			Input impedance \rightarrow high, hundreds of Kilo ohms						
			Output impedance \rightarrow low, tens of ohms						
		-	Darlington Emitter follower with Bootstrap						
			The biasing network reduces the input imped	ance of the amplifier.					
		1	This is because of the considerable amount of current it takes. By h-						
			resistance of the transistor and of the biasing network. The biasing network						
			resistance is always less than the resistance of the transistor. To improve the						
			resistance of the circuit, a series circuit consisting of a resistor and a						
			capacitor is connected between the emitter and the	base. This process of					
			connecting output to input through a resistor under a	c conditions is called					
6	Procedu	Iro	Bootstrapping						
0	Program	n. Activity.	Procedure:						
	Algorit	nm, Pseudo	1. To find Q-point: Connect the circuit v	without Ac supply .Set					
	Code	,	Vcc=10V. Measure the DC voltage (using CRO/m	ultimeter) at the (V_{B2}) ,					
			Collector (V_{C2}) emitter (V_{E2}) w.r.t ground. Then defined the second	etermine VC _{E2} = V _{C2} –					
			VE_2 , $I_{C2}=I_{E2}=V_{E2} / R_E$						
			2. $Q \text{ point} = (Vce_2, Ic_2)$						
			3. Connect the signal generator and a	apply a sine wave of					
			peak-to-peak amplitude 1V, 1kHz from the sign	al generator and note					
			down the output wave form.	0					
			4. Gradually increase the input signal u	until the output signal					
			get distorted. When this happens slightly redu	uce the input signal					
			amplitude such that output is maximum undistorted	l signal. Then measure					
			the magnitude of the input and output waveform.	Calculate the Voltage					
			gain.						
		ļ	5. Connect the bootstrap circuit Rb	and Cb between the					
			emitter and base as shown in the circuit. Repeat	the steps 3 to 5					

STHSTITUTE OF THE	
	ł
MGALORD	

		To measure Zi and Zo:							
		Procedure							
		2. Set the DRB to minimum resistance (0 Ω), I/P sine wave							
		amplitude to 1V p-p, I/P sine wave frequency to 10 KHz.							
		3. Measure Vo (p-p). Let Vo=Va							
		4. Increase DRB till Vo=Va/2.the corresponding DRB value							
		gives Zi.							
	To measure Zo (Output Impedance): Procedure:								
		1. Connect the circuit as shown in figure. Set the DRB to its maximum resistance value, I/P sine wave amplitude to 1V p-p,							
		Frequency to 10 KHz.							
		2. Measure vo p-p, let vo = v b 3. Decrease DBB till Vo = $Vb/2$							
		The corresponding DRB value gives Z_0							
		To find the current gain:							
		Ai=Io/Ii= (Vo/Zo)/(Vi/Zi) = (Vo/Vi) * (Zi/Zo)							
		Current gain Ai ≈ Zi / Zo, since (Vo/Vi) = 1							
1	BIOCK, Circuit, Model Diagram.	Circuit Diagram: Darlington emitter follower without bootstrap							
	Reaction Equation,	Vcc							
	Expected Graph	Ϋ́́ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ							
		signal							
		generator Vi 🛇 E							
		^R 2≸ R _E Vo							

Dept Prepared by Approved

and the second second	TITUTE OF TRO	SKIT	Teaching Process							Rev No.: 1.0	
	Doc Code:			KIT.Ph5b1.F03	Date: 1	11-07-2019					
* 34	Title:			Course Lab Manual	Page: 2	Page: 25 / 53					
Copyri	ght ©2017.	cAAS. All rights rese	erve	J.							
				Ib1=Ie1 / hfe =	0.2mA	/ 100 =	0.02mA				
			$R1 = V_{R1} / (10 (Ib1)) = 3.8 / (10 x 0.02mA) = 1.9 M\Omega$ Cho R1=1 MΩ								
	R2= V _{R2} / (9 Ib) = 7.2 / (9 x 0.02mA) = 3.4 MΩ R2=1.5 MΩ										Choose
10	Graphs	, Outputs									
11	Results	& Analysis	Re	sult:							
	Thus the Darlington's Emitter follower was designed and studied										
				Parameters	Av =	/o/Vi	Zi	Zo		Ai	
				Without Bootstrap							
				With bootstrap							
12	Applica	tion Areas									
			In	some Capacitor to	power t	he high-	-side NMO	S drive	er.		
13	Remark	(S									
14	Faculty	Signature									
	with Da	ite									

Experiment 05 : COMMON EMITTER bjt Amplifier

-	Experiment No.:	5	Marks		Date Planned		Date Conducte d		
1	Title	Desig divid	Design and set up the BJT common emitter amplifier using voltage divider bias with and without feedback and determine the gain-						
		band	width produ	ict from its	rrequency re	sponse.			
2	Course Outcomes	Desig respo	gn BJT com onse.	mon emitte	r amplifier &	& determine	the Gain &	& Frequenc	
3	Aim		To design with and	n a commo without feed	n emitter ar lback.	nplifier und	ler voltage	divider bia	

		SKIT	Teaching Process	Rev No.: 1.0		
RAIL C		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019		
Title:		Title:	Course Lab Manual	Page: 26 / 53		
Copyright ©2017. cAAS. All rights reserved.						
4	Materia Equipm	l /] ient (Bread board, NPN transistor, Resistors, Capacitors, VR CRO for testing, Probes, wires, DRB, Multimeter for te	.PS, Signal generator, sting		
	Require	ed				
5	Theory	, Formula,'	Thoery:			
	Princip	e, Concept	The aim of any small signal amplifier is to amplify a	ll of the input signal		
			with the minimum amount of distortion possible to	the output signal, in		
		(other words, the output signal must be an exact repre	oduction of the input		
		9	signal but only bigger (amplified).To obtain low distor	tion when used as an		
		á	amplifier the operating quiescent point needs to be cor	rectly selected.		
The single stage common emitter amplifier circuit shown above use commonly called "Voltage Divider Biasing". This type of arrangement uses two resistors as a potential divider network a supply with their center point supplying the required Base bias volta transistor. Voltage divider biasing is commonly used in the design of transistor amplifier circuits. This method of biasing the transistor reduces the effects of varying Beta, (β) by holding the Base constant steady voltage level allowing for best stability. The quiese voltage (Vb) is determined by the potential divider network formed two resistors, R1, R2 and the power supply voltage Vcc as shown current flowing through both resistors.						
6	Proced	ure, <u>l</u>	Procedure:			
	Progran	n, Activity,	 Connect the circuit as per the circuit diagram. A pply input of 1y p-p 			
	Algorit	nm, Pseudo	 Apply input of iv p-p. Measure the output voltage at collector 			
	Code		4 Calculate the gain			
			5. Vary the input frequency from 100 Hz to	1MHz and plot the		
			bandwidth of the amplifier.	Ĩ		
7	Block	Circuit	Circuit Diagram.			
'	Model	Diagram	a) without foodback			
	Reactio	n Equation.	aj willout iccuback			
	Expecte	ed Graph				

Dept Prepared by Approved

	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 11–07–2019
* SANGALORE*	Title:	Course Lab Manual	Page: 28 / 53

		S.NO	Frequency(Hz)	INPUT	OUTPUT	VOLTAGE
		·····		VOLTAGE(V _i)	VOLTAGE(V₀)	GAIN
						$A_v = (V0/V_i)$
0	Samplo		Design:			
9	Sample		A common	n omittor on	pulifier airquit ha	a lood
	Calculations		A Common	$af = 2k\Omega_{a}$ and a	supply voltage of 12v	Coloulate the
			movimum Co	ollootor ourront (I	a) flowing through the	Lond register
			maximum CC	niector current (1	fully "ON" (acturation	e load resision
			when the train -0	isistor is switched	Turiy On (saturation	i), assume vce
			-0.			
				17 TT	10 1	
			$I_{\alpha} =$	VCC - VRE	$=\frac{12-1}{2}=9.2$	m A
			+C _(MAX)	D	1200	11111
				кL	1200	
			Generally, the	e quiescent Q-poi	nt of the amplifier is v	vith zero input
			signal applied	l to the Base, so tl	he Collector sits about h	nalf-way along
			the load line	between zero vo	olts and the supply vol	ltage, (Vcc/2).
			Therefore, the	e Collector curren	t at the Q-point of the	amplifier will
			be given as:			Ŧ
			1	2-1		
			-	- 55		
			$Ie_{init} \equiv -$	$\underline{2}_{\pm} = \underline{-3.5}_{\pm}$	= 4.58 mA	
			(Q) 1	200 - 1200		
			If we assume	a Beta (β) value	for the transistor of sa	y 100

S.S.W.	TITUTE OF TRE	SKIT	Teaching Process	Rev No.: 1.0			
New Co		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019			
* 0,	NGALORE	Title:	Course Lab Manual	Page: 30 / 53			
Copyri	ght ©2017.	cAAS. All rights res	ved.				
			And bandwidth =				
			lesult:				
			Transistor in CE configuration amplifier under volta	ge divider bias with			
			feedback is verified with gain=				
			And bandwidth =				
12	Applica	tion Areas	Apply voltage divider bias to find gain bandwidth & f	requency response			
13	Remark	(S					
14	Faculty	Signature					
	with Da	ite					

Experiment 06: Characteristics of Junction Field Effect Transistor

-	Experiment No.:	6	Marks		Date		Date			
					Planned		Conducte			
							d			
1	Title	Plot t	Plot the transfer and drain characteristics of a JFET and calculate							
		its dı	s drain resistance, mutual conductance and amplification factor.							
2	Course Outcomes	Plot	the transfe	r & drain d	haracteristic	cs of JFET	& do the r	esistance &		
		cond	onductance calculations							
3	Aim	To p	olot the char	acteristic cu	rve of a giv	en FET and	determine	r _d ,g _m ,μ, I _{dss} ,		
		V_p								
4	Material /	Lab M	Manual							
	Equipment	Reg	ulated Pow	er Supply	(0-30V) -2	numbers, A	Ammeter (()-30 mA)-2		
	Required	num	bers, Voltme	eter (0-30V)	-2 numbers.	FET-(Bfw-	10), 68K, 1K	resistors.		
5	Theory, Formula,	The	ory: FET	is a voltag	e controlled	l electronic	device. It	has got 3		
	Principle, Concept	term	inals. They	are Source	, Drain and	Gate. When	n its gate is	blased -ve		
			respect to t	ne source, u	ne PN Juncu	lon are revel	rse blased al	na depietion		
		the c	lenletion rec	vion nenetral	tes deenly in	to the chanr	nel The resu	It is that the		
		char	inel is narro	wed and its	resistance i	s increased	and Id is red	uced. When		
		the -	-ve bias vo	ltage is furt	her increase	d the deple	tion region	meet at the		
		cent	er and I _d is c	utoff compl	etely.	-	-			
6	Procedure,									
	Program, Activity,	Dra	in Character	ristics						
	Algorithm, Pseudo	1	. Connect the	e circuit as per	the circuit diag	gram.				
	Code	2	. Set the gate	e voltage V_{GS} =	=0V.					
		3	. Vary the V_{I}	os in steps of 1	V and note do	wn the corresp	onding I _{d.}			
		4	. Repeat the	same procedur	the for $V_{GS} = -1$	V.				
		5	. Plot the gra	ph for V_{DS} Vs	I _d for constant	t V _{GS} .				

Sea	STITUTE OF THE	SKIT			Teaching Proc	ess		Rev No.: 1.0
San Ca		Doc Code:	SKIT.	Ph5b1.F03				Date: 11-07-2019
*0	WGALORE *	Title:	Cour	se Lab Manua	al			Page: 31 / 53
Copyri	ight ©2017.	cAAS. All rights rese	erved.	— î	<u></u>			1
]	Proced	ure: Transfer	Characteristic	S rouit die	~~~~	
			1. 2	Set the drain vo	The perturbation of the second secon	icuit dia	igrani.	
			3.	Vary the V_{cs} in	1 steps of 1 V and	note do	own the correspond	ting L
			4	Repeat the sam	n steps of 1 v and	$V_{\rm pc} = 10$	0V	
	5 Plot the graph for V_{cs} Vs L for constant V_{ps}							
7	$V_{\rm Block}$ Circuit Circuit Diagram:							
ľ	Model Diagram							
	Reactio	n Fauation					4144 0 20 - 0	
	Expecte	ed Granh					AM1 0-30mA	
	Expect	cu Gruph					-())>)-+	
						G	11	502
					Ť	≁∟	bfw10	$\geq \frac{1}{1} k\Omega$
				≥ _{R1}	VM1 V	S		
				68 kΩ	0-10			
				ſ			VM2 (V)	(+) V2
								- 0:30
			V1	<u>_</u>)			0-500	
			0.30	\downarrow				
8	Observ	ation I	Drain (Characteristic	s:			
	Table.	Look-up						
	Table.	Output		0		-		
			V _{GS}	=UV			/ _{GS} =-1v	
			V_{DS}	(v)	$I_{d}(\underline{mA})$	<u>></u>	V _{DS} (V)	$I_d(\underline{mA})$
L	1							
Dom	+							

A STATE	STITUTE OF THE	SKIT		Teaching P	rocess	Rev No.: 1.0
Sal KR		Doc Code:	SKIT.Ph5b1.	-03		Date: 11-07-2019
10	WGALORE	Title:	Course Lab I	Manual		Page: 32 / 53
Copyr	ight ©2017.	cAAS. All rights rese	rved.			
			Fransfer Chara	acteristics:		
		_	V _{DS} =5v		V_{DS} =10v	
		-	$V_{GS}(v)$	I _d (mA)	V _{GS} (v)	I _d (mA)
		-				
		-				
		-				
9	Sample	I	ET Parameter	Calculations:		
	Calcula	tions	• Drain R	esistance $r_{d} = \Delta V_{DS/} \Delta$	M _d	
			 Tran con Amplifi 	nductance $g_{m=} \Delta I_{d} \Delta$	V _{GS}	
10	Graphs	, Outputs	Dutput Char	acteristic Graph	:	
			I _D (mA)	Ť		
			Ohr	nic Satur	ation Region	Breakdown
			20	/ ^{"knee"}	V _{GS} = 0	
			1055			
			15	<u>//</u>	V _{GS} = -1v	++++
				// i	$V_{GS} = -2v$	
					V	
			-		V GS3V	₽
			5	I	$V_{GS} = -4v$	
				Pinc	h-off Region	8
			0			<u> </u>
				VP		US (V)
			nnut Charac	teristics Cranh.		
		1	<u>npui Unara</u>	<u>, en isues Orapii.</u>	-	

STATE OF	TITUTE OF TRO	SKIT	Teaching Process	Rev No.: 1.0
	Sal I	Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
* BAI	WGALORE *	Title:	Course Lab Manual	Page: 33 / 53
Copyrig	ght ©2017. cA4	AS. All rights rese	ved.	
11	Results &	Analysis I	Channel Saturation region Linear region Sesult: Thus the drain and transfer characteristics of	given FET is plotted.
			Drain Resistance T	
			 Tran conductance g_m= 	
			 Amplification Factor=µ= 	
			• I _{DSS=}	
			• Pinch off Voltage $= V_p =$	
12	Applicatio	on Areas l	Jsed in buffer amplifier,electronic switch, phase shif	t oscillator etc
13	Remarks			
14	Faculty with Date	Signature		
	min Date	-		

Experiment 07 : Common source JFET/MOSFET

-	Experiment No.:	7	Marks		Date Planned		Date Conducte		
1	Titla	Dacid	n cotup op	d plat tha fr		nonce of Co	d Common Sour		
1	The	Desig	Jesign, setup and plot the frequency response of Common Source						
		JFET/	FET/MOSFET amplifier and obtain the bandwidth.						
2	Course Outcomes	Cons	truct JFET/N	IOSFET and	Analyze & p	lot the frequ	lency respor	nse graph.	
3	Aim	Desig	gn RC Cou	pled single	stage FET	amplifier a	nd determin	ne the gain,	
		Freq	uency respoi	nse, input an	d output im	pedance.			
4	Material /	Lab Manual							
		Brea	Bread board, NPN transistor, Resistors, Capacitors, VRPS, Signal generator,						

SUR IN	STITUTE OF THE	SKIT		Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.	Ph5b1.F03	Date: 11-07-2019
* 84	WGALORE *	Title:	Cour	se Lab Manual	Page: 34 / 53
Copyri	ght ©2017.	cAAS. All rights rese	erved. CRO f	or testing Probes wires DRB Multimeter for t	esting
	Require	d		or testing, 1100es, wires, DAD, Mathineter for t	esting
5	Theory, Principl	, Formula, e, Concept	Theor presen Drain unfortu varies loaded Resisto feedba its read frequen Capaci follow	y: with the field effect transistor (FET), the us t quite a problem when a load resistance is place current is set by the bias voltage applied to the inately the drain current versus gate voltage cha from sample to sample of the same transisto drain is used, gate bias must be set to suit the in or Rs is used to provide DC feedback for stability but this must be by-passed by capacitor Cs ck at signal frequency. The value of Cs should ctance is not greater than one tenth of the value ncy of operation. itor C3 provides DC isolation between the co ing load circuit or following stage.	se of RC coupling can ed in the drain current. e gate of the FET and aracteristic of the FET r type. If a resistance adividual transistor. zation of the operating s to prevent negative d be selected such that ue of Re at the lowest llector circuit and the
6	Procedu	ure,	10110		
	Prograr Algorith	n, Activity, 1m, Pseudo	1.	Procedure: Connect the circuit as shown above.	
	Code		2.	Apply a sine wave signal of amplitude 1 generator.	00 mV from signal
			3.	Keep the frequency of the signal generator in around 2 KHz. Increase amplitude of the input signal is undistorted.(CRO at output).	n mid band range i.e., it signal till the output
			4.	Measure Vi amplitude =V for conundistorted output.	rresponding maximum
			5.	Measure Vo amplitude =V	
			6.	The ratio of (Vo/Vi) max gives the maximum amplifier.	undistorted gain of the
			7.	Now vary the input sine wave frequency from suitable steps. Measure output voltage amplitu CRO.(See that amplitude of Vi remains con frequency range.)	n 100 Hz to 1 MHz in ude at each step using nstant throughout the
			8.	Tabulate the results in the tabular column show	n below.
			9.	Plot the frequency response i.e., frequency determine Bandwidth and G.B.W product.	versus Gain in dB,

	To m	To measure Zi:							
	Proce 1.	edure: Connect the circuit as shown in above figure							
	2.	Set the following							
		• DRB to 0Ω							
		• Input sine wave amplitude to say 50 mV							
		• Input sine wave frequency to any mid frequency say 10 KHz.							
	3.	Measure amplitude of Vop-p. Let Vo=Va say							
	4.	Increase DRB (keeping Vi constant) till Vo=Va/2.The corresponding DRB gives the input impedance Zi in RC coupled amplifier							
	To m	easure Zo:							
	Proce	edure:							
	1.	Connect the circuit as shown in the above figure							
	2.	Set the following							
		• DRB to its maximum resistance value.							
		• Input sine wave amplitude to about 50 mV							
		• Input sine wave frequency to 10 KHz.							
	3.	Measure Vop-p. Let Vo=Vb							
	4.	Decrease DRB from its maximum value till Vo=Vb/2.The corresponding DRB gives the output impedance Zo.							
7	Block, Circuit, Circ	uit diagram:							
	Model Diagram,								
	Reaction Equation,								
	Expected Graph								

ST. ME	TITUTE OF TRO	SKIT		Teaching Pr	ocess	Rev No.: 1.0		
New Contraction		Doc Code:	SKIT.Ph5b1.F	03		Date: 11-07-2019		
* 84	NGALORE	Title:	Course Lab M	lanual		Page: 37 / 53		
Copyri	ght ©2017.	cAAS. All rights rese	erved.					
			Frequency (Hz)	Output Voltage (P-P) (Volts)	Voltage Gain Av = $\underbrace{V_{g}}$ / V _i	Gain in dB =20 log (Vg / Vi)		
9	Sample		Design:	the sain of the I	ET annulifian ta	he equal to 10		
	Calcula	tions	Assume From sr	e the gain of the f	FET amplifier to	be equal to 10		
			Let $I_D =$	$= 2\text{mA}$. $I_{\text{DSS}} = 10\text{m}$	$nA. V_{P} = -3V V$	$T_{\rm GS} = -2V$		
			Let V_{DD}	= $10V$ then V_{DS} =	= 10/2 = 5V			
			$I_D = I_{DSS}$	$[1 - V_{GS}/V_P]^2$				
			Sim	olifying we get V	_{GS} =1.67V			
			We kno	$W VS = I_D \times RS$				
			$V_s = I_s \times R_s$					
			Therefo	ore $Rs = \underline{Vs} = \underline{-V_0}$	$a_{\rm HS} = 1.67 = 820$	Ω		
				Is Is 2m	Ā			
			To find $R_{D_{i}}$					
			$V_{\rm DD} = V$	$V_{\rm DS} + I_{\rm D} * R_{\rm D} + V_{\rm S}$	1/ I _ [10	5 1 (7)/2m A - 1 (Vohm		
			KD – L Choose RD=1 4	$\mathbf{v}_{DD} - \mathbf{v}_{DS} - \mathbf{v}_{S}$	$J/I_{\rm D} = [10-$	·5-1.07]/2111A— 1.0 K011111.		
		,	The input resist	tance of FET is v	erv high hence F	$R_{c}=2M\Omega$		
			Choose	R _G =2.2MΩ				
			Bypass	capacitor Cs=0.2	2μF			
			Coupli	ng capacitors C	$C_1 = C_{C_2} = 0.1 \mu F$	N		
10	Graphs	, Outputs	Frequency res	ponse:				
			Gain in dB ▲	Graph				
			AV _{mid}	t dB				
				Î				
					f_2			
			., •	Danumuun	-			

Sea M	STITUTE OF TRO	SKIT	Teachir	ng Process	Rev No.: 1.0		
		Doc Code:	SKIT.Ph5b1.F03		Date: 11-07-2019		
*0	WGALORE	Title:	Course Lab Manual		Page: 38 / 53		
Copyri	ight ©2017.	cAAS. All rights res	erved.				
	f ₁ : Lower Cut-Off Frequency						
f ₂ : Higher Cut-Off Frequency							
			A_V : Voltage Gain = 20log ₁₀ (V ₀ / V _i)			
A _{Vmid:} Voltage Gain at mid-band							
			f ₂ -f ₁ :Band width of the amp	lifier			
			$3dB = 20log_{10}(0.707)$				
11	Results	& Analysis	Result:- Thus the single stag	e FET Amplifier was de	esigned and studied.		
			Gain	=			
			Bandwidth	=			
			Gain-Bandwidth product	=			
			Input Impedance	=			
			Output Impedance	=			
12	Applica	tion Areas	widely used for switching a devices.	nd amplifying electroni	c signals in the electronic		
13	Remark	s					
14	Faculty	Signature					
	with Da	ate					

Experiment 08 : n-channel MOSFET

-	Experiment No.:	8	Marks		Date Planned		Date Conducte		
							d		
1	Title	Plot	the transfer	and drain ch	aracteristic	s of n-chanı	nel MOSFET		
		and o	and calculate its parameters, namely; drain resistance, mutual						
		cond	conductance and amplification factor.						
2	Course Outcomes	Calcı	ulate & Plot 1	he transfer	& drain char	acteristics o	of N-channel	I MOSFET	
3	Aim	Desi	gn N-channe	el MOSFET	and determi	ne the drain	resistance, r	nutual	
		cond	uctance and	amplificatio	n factor.				
4	Material /	Lab I	Manual						
	Equipment	MOSFET, Power supply, Voltmeters, Ammeters, Resistances							
	Required								

STATUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0			
	Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019			
* RANGALORE *	Title:	Course Lab Manual	Page: 39 / 53			
Copyright ©2017. cAAS. All rights reserved.						

5	Theory, Formula.	
	Principle Concept	Theory: The metal-oxide-semiconductor field-effect
		transistor (MOSFET, MOS-FET, or MOS FET) is a type of transistor used
		for amplifying or switching electronic signals.
		Although the MOSFET is a four-terminal device with source (S), gate (G), drain (D), and body (B) terminals, ^[1] the body (or substrate) of the MOSFET is often connected to the source terminal, making it a three-terminal device like other field-effect transistors. Because these two terminals are normally connected to each other (short-circuited) internally, only three terminals appear in electrical diagrams. The MOSFET is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common.
		very little current to turn on (less than 1mA), while delivering a much higher current to a load (10 to 50A or more).
		In <i>enhancement mode</i> MOSFETs, a voltage drop across the oxide induces a conducting channel between the source and drain contacts <i>via</i> the field effect. The term "enhancement mode" refers to the increase of conductivity with increase in oxide field that adds carriers to the channel, also referred to as the <i>inversion layer</i> . The channel can contain electrons (called an nMOSFET or nMOS), or holes (called a pMOSFET or pMOS), opposite in type to the substrate, so nMOS is made with a p-type substrate, and pMOS with an n-type substrate (see article on semiconductor devices). In the less common <i>depletion mode</i> MOSFET, detailed later on, the channel consists of carriers in a surface impurity layer of opposite type to the substrate, and conductivity is decreased by application of a field that depletes carriers from this surface layer.
6	Procedure, Program, Activity, Algorithm, Pseudo Code	 Step 1: start by Designing the circuit using bread board Step 2: Note down the readings Step 3: do the calculations for drain resistance, mutual conductance and amplification factor. Step 4: Disconnect the circuit

SKIT Doc Code: Title:		SKIT		Teaching Process				
		Doc Code:	SKIT.Ph5b1.F03			Date: 11-07-2019		
		Title:	Course Lab Manu	al		Page: 40 / 53		
Copyri	Copyright ©2017. cAAS. All rights reserved.							
	вюск, Model	Circuit, Diagram,	Circuit diagram		1K	A,		
	Reactio	n Equation,	1К	0-	-100 mA			
	Expecte	ed Graph	L~~~		70	l		
			30 V	- √ V _{GS} 0–30 V =	0-30 V (V) V _{DS}			
Q	Obcony	ation	Observation					
0	Table	Look-up	Observation.					
	Table,	Output	Drain Characteristics		1			
	l'asie,	output	V _{cs} =0v	1	V _{GS} =-1v			
			V _{DS} (v)	I₄(mA)	V _{DS} (v)	Id(mA)		
			Transfer Characteristics					
			Vps=5v		V _{ps} =10v			
			V _{cs} (v)	L(mA)	V _{GS} (v)	L(mA)		
			ļ	+				
9	Sample							
	Calcula	tions						
10	Graphs	, Outputs	Graph: Output Character	istics:				

Experiment 09 : class B push pull power amplifier

-	Experiment No.:	9	Marks		Date		Date	
					Planned		Conducte	
1	Titlo	Cat up and study the working of complementary symmetry class P				R		
		nush	pull nower	amplifier an	d calculate t	he efficienc	V.	D
2	Course Outcomes	Unde	rstand the V	Vorking of c	ass B push	pull power a	,. Implifier	
3	Aim	Desi	2n class B p	ush pull pow	er amplifier	and determ	ine the effic	iencv.
4	Material /	Lab N	/anual		F			
	Equipment							
	Required							
5	Theory, Formula,	To se	e the worki	ng of class B	push pull p	ower ampli	fier	
	Principle, Concept	To de	o the calcula	tions for eff	iciency			
6	Procedure,	Step	1: start by E	Designing the	e circuit usii	ng bread bo	ard	
	Program, Activity,	Step	2: see the w	orking & No	te down the	readings		
	Algorithm, Pseudo	Step	3: do the ca	Iculations fo	r efficiency			
-	Code	Step	4: Disconne	ct the circuit				
1	BIOCK, CIrcuit,							
	Reaction Equation							
	Expected Graph							
8	Observation	Writ	e down the	reading and	do the calcu	lations for	efficiency	
	Table, Look-up			j			,	
	Table, Output							
9	Sample							
	Calculations							
10	Graphs, Outputs							
11	Results & Analysis							
12	Application Areas	reas used in low-cost design devices and mobile devices						
13	Remarks							
14	Faculty Signature							
	with Date							

Experiment 10 : RC-Phase shift Oscillator using FET

SKIT			Teaching Process				Rev No.:	Rev No.: 1.0	
Doc Code:		SKI	SKIT.Ph5b1.F03			Date: 11-	Date: 11-07-2019		
* BA	Title:		Cοι	irse Lab Ma	nual			Page: 43	/ 53
Copyri	ght ©2017. Evnori	cAAS. All rights res	erved.	Marke		Date		Data	
	стреп		10	marks		Planned		Conducte	
								d	
1	Title		Desig	In and set-i	ip the RC-Pl	nase shift O	scillator usin	ig FET, and	
			calcu	late the free	luency of ou	itput wavefo	rm.		
2	Course	Outcomes	Const	truct & test	the RC-phas	se shift osci	llator using l	FET	
3	Aim		Writi f ₀ <1 Oscil	ng and testi 0k H _z (To lator)	ng for the pe design and	erformance of verify the	of BJT-RC P e performan	hase shift O ice of RC	scillator for phase shift
4	Materia	I /	Lab N	Ianual					
	Equipm	ent	Powe	er supply ((0-30V), Re	esistors, Ca	pacitors, P	otentiometer	, transistor
	Require	ed	(SL1	00).					
5	Theory	, Formula,	Theo	ry:					
	Princip	e, Concept	RC p	hase shift (Oscillator ba	asically con	sists of an a	implifier and	d feed back
			$RC c^{1}$	ircuit is as s	hown below	ors and capa	actions in rad	uder fashion	i. The dasic
				C					
			Ŧ		<u> </u>	*		V _o	
			1						
			V _i		ş	V _o	1 1 1		
			+		. <u>.</u>	_			V _c or(V _i)
			Tł the ci	ne current I	is in phase $(90^{\circ} \rightarrow Idea)$	with Vo, wh I value)	ereas the ca	pacitor volt	age Vc lags
			OR th	OR the output voltage Vo leads the I/P voltage Vi by angle φ is adjusted in					
			practi	practice, equal to 60°. RC network is used in feedback path. In Oscillator					
			feedb	eedback network must introduce a phase shift of 180° to obtain total phase shift of 180° total phase shift of $180^$					
			shift	around a lo is cascaded	op as 360°.	I nus three I	tal 180 ⁰ nha	each provid	e 60° phase e Oscillator
			circui	it consisting	amplifier a	nd Rc feedba	ack network	is as shown	below.
6	Proced	ure,		C	1				
	Prograr	n, Activity,	1.	Make the	e circuit cor	nnections as	shown in	Fig.1, the o	utput Vo is
	Algorit	nm, Pseudo		obtained	on CRO				
	Code		2.	The 10 K	Ω pot is adju	usted to get	a stable outp	out on the CI	RO.
			3.	The freq	uency of O with the the	scillations eoretical val	is measured ues.	using CRO	O and then
			4.	With resp are obser point beir	bect to output ved on the C ng 60° , 120°	tt at point P, CRO. We ca and 180 ⁰ res	the wavefor n see the see spectively.	rms at point e the phase s	Q, R and S shift at each

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
* 04	WGALORE	Title:	Course Lab Manual	Page: 44 / 53
7	ght ©2017. Block, Model Reactio Expecte	Circuit, Diagram, n Equation, ed Graph	Course Lab Manual Pred. NOTE: The value of all three capacitors C frequency of Oscillation can be changed measured again. Circuit Diagram: $R_1 \qquad \qquad$	is changed and the it to new value and is $\overrightarrow{V_0}$ $\overrightarrow{=}$ C pot $Rc=1K\Omega$, $Re=470\Omega$,
8	Observ Table, Table, (ation Look-up Output	Write down the reading & wave forms and do the calc of output waveform.	ulations for frequency
9	Sample		Design:	
	Calcula	tions	Let $Vcc=10V$, $Ic=2mA$, $\beta=50$ $V_{CE}=10/2 = 5V$ $V_{E}=1/10^{th}$ Vcc=10/10=1V $R_{E}=V_{E}/I_{E} = 1/2mA=500\Omega$ Choose $R_{E}=470\Omega$ Using KVL loop $Vcc=I_{C}R_{c}+V_{CE}+V_{E}$ $R_{C} = (10-5-1)/2mA = 2 K\Omega$ Choose $R_{C}=2.2k\Omega$ From biasing circuit $VB=V_{BE}+V_{E}=0.7+1=1.7V$ $I_{C}=\beta I_{B}$ $I_{B}=0.04mA$ Assume 10I _B flowing in R ₁ and 9I _B flowing in R ₂	

STITUTE OF	SKIT	Teaching Process	Rev No.: 1.0			
	Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019			
* ANGALORE *	Title:	Course Lab Manual	Page: 46 / 53			
Copyright ©2017. cAAS. All rights reserved.						

		P & S
12	Application Areas	
		musical instruments, voice synthesis and in GPS units since they work at all
		audio frequencies.
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 11 : Hartley Oscillator & Colpitts Oscillator

-	Experiment No.:	11	Marks		Date Planned		Date Conducte	
							d	
1	Title	Desig	gn and set-i	up the follow	/ing tuned o	scillator circ	cuits using	
		BJT, a	and determi	ne the frequ	ency of osci	llation.		
		(a) Ha	artley Oscilla	ator (b) Colp	itts Oscillato	or		
2	Course Outcomes	Dete	rmine the fr	equency res	ponse of Ha	rtley & Colp	itts oscillato	r
3	Aim	To u oscill	nderstand tl lator using F	ne design as BJT.	spects and f	feature of th	ne Hartley a	und Colpitts
4	Material /	Lab N	Manual					
	Equipment	Brea	d board, N	IPN transis	tor SL100,	Resistors,	Capacitors,	VRPS (0-
	Required	30Vc	lc), Decade	Capacitor B	ox, CRO for	testing		
C	Principle, Concept	Theo whos oscill that Hartl ampl induc to the circu 1. Th tank conn of os oscill	Theory:- In phase shift oscillator, RC circuit is used to get the oscillation whose frequency is in the audio range. To get higher frequency of oscillation, feedback circuit to have inductor and capacitors. The oscillators that employ L&C elements are called tuned oscillators. Hartley and Colpitts oscillators belong to LC tuned oscillator. A Hartley oscillator as shown in fig 2 has an Potential divider biased BJT amplifier and LC feedback circuit. Its feedback or tank circuit consists of 2 inductor in series and one capacitor in parallel. Colpitts oscillator is similar to the Hartley oscillator except the change in the tank circuit. Here the tank circuit consists of 2 capacitors in series and one capacitor as shown in fig 1. The amplifier is single stage amplifier and has 180° phase shift. So this tank circuit provides 180° phase shift due to inductor & capacitor connection to make total phase shift of the circuit as 360° at the frequency of oscillation. When the feedback is adjusted so that A $\beta = 1$, sustained					

SKIT		Teaching Process	Rev No.: 1.0
	Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
84NGALORE *	Title:	Course Lab Manual	Page: 47 / 53
6 Proced Progra Algorit Code	ure, m, Activity, hm, Pseudo f	Design & Draw the circuit, Calculate the com Connect the components on the bread boaring and ig 1. Solution on Vcc and verify the biasing circuit a Also observe the wave form across the output for the wave form across the output for the wave is not observed, connect a variable 1 resistor. Adjust this potentiometer to get the o Draw the waveform on the graph sheet and the Compare this frequency with the expected for	ard as per diagram shown in and note down the values ut using CRO OK or 1K pot in series with Re putput note down the frequency. requency and find the % error.
27 Block, Model Reactic Expect	Circuit, Diagram, on Equation, ed Graph	Colpitts Oscillator Colpitts Oscillator +12v +12v $R_1 \neq 22k R_0 \neq 1k$ C_0 0.1uf $R_2 \neq 6.8k$ $R_1 \neq 22k R_0 \neq 1k$ C_0 0.1uf $R_2 \neq 6.8k$ $R_1 \neq 22k R_0 \neq 1k$ C_0 0.1uf $R_2 \neq 6.8k$ $R_1 \neq 470$ C_0 $C_1 \neq C_0$ $C_1 \neq C_2$ $C_1 \neq C_2$ C_2 $C_1 \neq C_2$ C_2 $C_1 \neq C_2$ C_2 $C_1 \neq C_2$ C_2 C_2 C_2 $C_1 \neq C_2$ C_2	Υο Ο Ο Θ

		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
* 84	NGALORE	Title:	Course Lab Manual	Page: 48 / 53
Copyri	ght ©2017.	CAAS. All rights rese	Hartley Oscillator: f(x) = 1 + 12x $f(x) = 1 + 12x$	Vo -0 Rc=1KΩ, Re=470Ω,
8	Observ Table,	ation Look-up	Write down the reading and do the calculations oscillation.	for the frequency of
	Table, (Output		
9	Sample		Design of amplifier:	
	Calcula	tions	Let $Vcc=10V$, $Ic=2mA$, $\beta=50$ Let $V_E=1V$ $V_{CE}=10/2 = 5V$ $R_E=V_E/I_E = 1/2mA=500\Omega$ Choose $R_E=470\Omega$ Using KVL loop $Vcc=I_CR_c+V_{CE}+V_E$ $R_C = (10-5-1)/2mA = 2K\Omega$ Choose $R_C=2.2k\Omega$	
			From biasing circuit VB= $V_{BE}+V_{E}=0.7+1=1.7V$	

S Doc		SKIT	Teaching Process	Rev No.: 1.0
		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019
* 04	WGALORE	Title:	Course Lab Manual	Page: 50 / 53
Copyri	ght ©2017.	cAAS. All rights rese	erved.	
			$ \begin{array}{c} \forall o \\ \uparrow \\ \uparrow \\ \downarrow \\ \downarrow \\ \hline \\ T \end{array} $	
11	Results	& Analysis		
			Result:-	
			The frequency of oscillation obtained for Hartley	Oscillator is equal to
		,	The frequency of oscillation obtained for Colpitts kHz	Oscillator is equal to
12	Applica	tion Areas		
			Used in radio receivers, oscillations in RF, senso communications.	ors, mobile and radio
13	Remark	(S		
14	Faculty	Signature		
	with Da	ate		

Experiment 12 : Crystal oscillator

-	Experiment No.:	12	Marks		Date Planned		Date Conducte d	
1	Title	Design and set-up the crystal oscillator and determine the frequency of oscillation.						
2	Course Outcomes	Determine the frequency of oscillation of crystal oscillator						
3	Aim	Design and testing for the performance of BJT- crystal oscillator for $f_{\rm o}$ $>$ 100KHz						

A STATE	TITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0			
		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019			
* BA	NGALORE*	Title:	Course Lab Manual	Page: 51 / 53			
Copyri	ght ©2017. cAAS. All rights reserved.						
4	4 Material / Lab Manual Equipment Pread board transistor SI 100 Posistors / Potentiometer						
	Required		VRPS(0-30V dc), CRO & Multimeter, Probes				
5	5 Theory, Formula, Theory: A Crystal oscillator is an electronic Principle, Concept mechanical resonance of a vibrating crystal of p create an electrical signal with a very precise freque commonly used to keep track of time (as in quartz w a stable clock signal for digital integrated circu frequencies for radio transmitters and receivers. Crystal oscillators are made from quartz. A crystal series resonant or parallel resonant mode. In the se minimum impedance at resonance and in parallel n impedance and is inductive. Since the parallel n crystal is slightly higher than its series resonant fr		circuit that uses the coelectric material to cy. This frequency is t watches), to provide its, and to stabilize an be operated in the s mode crystal offers le it offers maximum mant frequency of a uency, the method of				
6	Procedu	ure.	Procedure:				
	Program. Activity.						
	Algorithm, Pseudo 1. Rig up the circuit as shown in figure.						
	 Code 2. Set VCC to 12v, and check the DC conditions of the amplifier 3. If DC conditions are satisfied, connect the feedback circuit a the output at the collector terminal. 4. Adjust the pot connected in series with Re such that ou undistorted sine wave. Measure the frequency and compar crystal frequency value. 			e amplifier circuit ek circuit and observe ch that output is an nd compare with the			
7	Block,	Circuit,	Circuit Diagram:				
	Model	Diagram,					
	Reactio	n Equation,					
	Expecte	ed Graph	+12v				
			R1 \neq 22k Re \neq 2.2k \downarrow C \downarrow Cc \lor Vo \bigcirc				
8	Observa	ation	Write down the reading and do the calculations for fre	quency of oscillation.			
	Table,	Look-up					
	Table, (Dutput					
8	Observa Table, Table, (ation Look-up Dutput	Write down the reading and do the calculations for fre	quency of oscillation.			

		SKIT	Teaching Process	Rev No.: 1.0		
		Doc Code:	SKIT.Ph5b1.F03	Date: 11-07-2019		
*0,	WGALORE *	Title:	Course Lab Manual	Page: 53 / 53		
Copyri	pyright ©2017. cAAS. All rights reserved.					
	The frequency of the output waveform is =MHz			MHz.		
12	I 2 Application Areas					
			frequency-determining component, a wafer of quar	tz crystal or ceramic		
			with electrodes connected to it.			
13	Remark	S				
14	Faculty	Signature				
	with Da	te				